
Hoare triples

Program fragments generated commence running in a ‘state’ of the machine. After doing some

computation, they might terminate. If they do, then the result is another, usually different, state.

Since our programming language does not have any procedures or local variables, the ‘state’ of

the machine can be represented simply as a vector of values of all the variables used in the program.

What syntax should we use for φR, the formal specifications of requirements for such programs?

Because we are interested in the output of the program, the language should allow us to talk about

the variables in the state after the program has executed, using operators like = to express equality

and < for less than. You should be aware of the overloading of =. In code, it represents an

assignment instruction; in logical formulas, it stands for equality, which we write == within

program code. For example, if the informal requirement R says that we should

Compute a number y whose square is less than the input x.

This means we need to be able to talk not just about the state after the program executes, but also

about the state before it executes. The assertions we make will therefore be triples, typically

looking like φ P ψ.

which (roughly) means:

If the program P is run in a state that satisfies φ, then the state resulting from P’s execution will

satisfy ψ.

The specification of the program P, to calculate a number whose square is less than x, now looks

like this:

It means that, if we run P in a state such that x > 0, then the resulting state will be such that y · y

0.

